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An Investigation of Methods for Reducing Sampling Error

in Certain IRT Procedures*

In IRT until now, the sampling variances and covariances for maximum
likelihood estimates of item parameters have usually been computed by
assuming the abilities to be known; the sampling variances and covariances
for ability estimates were computed by assuming the item parameters to be
known. In this paper, a suggested method for computing the sampling
variance-covariance matrix when all parameters are unknown (lord and
Wingersky, 1983) will be used to try to answer varfous practical
questions. Section 2 presents needed additional, though not conclusive,
evidence that the new method for computing the variance-covariance matrix
yields correct results. Section 3 investigates the effect of changing the
number of items or the number or distribution of people on the standard
errors of the item parameters and of the abilities. Section 4 presents a
technique for displaying and understanding the standard errors and
sampling covariances of estimates of item parameters.

Section 5 deals with the practically important situation where we
have two tests that contain a set of items in common and these tests are

administered to two separate groups of examinees. A problem in item

*This work was supported in part by contract N0O0O014-80-C-0402,
project designation NR 150-453 between the Office of Naval Research and
Educational Testing Service. Reproduction in whole or in part in
permitted for any purpose of the United States Government.
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banking or test equating is putting the parameter estimates for the two
tests on a common scale. One way to do this is to estimate all of the
parameters for both tests in one calibration run. When this is done, how
does the number and quality of the common items affect the standard

errors of the parameter estimates for the unique (noncommon) items?

1. Preliminaries

The three-parameter Birnbaum logistic model is used throughout. The

probability of examinee a answering item { correctly is

Pija = ci + (1 = cy)/(1. + exp(-1.7a4(6, - by))) (1)

where a; 1is the discrimination of item { ; by 1is the difficulty

for the item, ¢y 1is the lower asymptote of the item response

|
i
1

function, and 6, 1is the ability for examinee a . 1In a typical

calibration run, poorly estimatable c¢y are ordinarily fixed at some

common value. 1In this paper, however, all cj are considered unknown

| and must be estimated. In treating all of the c¢{ as unknown we are

! looking at the "worst case” standard errors.

i In IRT, the origin and unit of measurement of the ability scale is

i arbitrary. Until this scale is specified all parameters except the cj
are unidentifiable. The origin and unit of the ability scale must be

4 specified in terms of (as a function of) the true parameters. If the

{‘
e . .
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origin and unit of the ability scale were specified in terms of the
parameter estimates, then the true parameters would be undefined. Since
the true parameters are unknown but depend on the scale used, this means
that the scale origin and the scale unit (each defined as a function of
the true parameters) must be estimated from the data. The estimated
origin and scale unit are obviously subject to sampling errors, which
affect the accuracy of all parameter estimates. 1t is therefore important
to define the origin and unit each by a function of parameters that can be
estimated with good accuracy.

The scale recommended in Lotd and Wingersky (1983) and used here
requires that the mean of the difficulty parameters of certain selected

items be 0 (the origin) and that the difference between two such means

for two sets of selected items be 1 (the scale unit). This scale will be

referred to as the "capital” scale: parameters on this scale will be

denoted by the capital letters Ay , By , Ci{ , ©4 . The "small” scale

or the "LOGIST" scale, referred to by lower-case letters, is the scale

used by the LOGIST program (Wingersky, Barton, and Lord (1982)), the
computer program used here for estimating the parameters of (1) by maximum
likelihood. LOGIST sets a truncated mean of the estimated abilities to O

and a truncated standard deviation of the estimated abilities to 1. The

bt

following formulas convert the parameters from the LOGIST scale to the

capital scale:

04 =(85 - bg)/k

k =B - B

*




where BO and Bl are means of the by for two selected subsets of

items. The capital scale is a linear transformation of the LOGIST scale.

The c¢j are not affected by the scale.

2. Variance of pj , the Proportion Correct

I1f we could prove that the maximum likelihood parameter estimates for
the Birnbaum model are consistent when all item and ability parameters are
estimated simultaneously, the sampling variance-covariance matrix
described in Lord and Wingersky (1983) would be the correct one to use.
Since consistency has not yet been proven mathematically any results that
confirm the appropriateness of this variance-covariance matrix makes one

feel more comfortable about using it.

The sampling variance of pjy , the proportion of examinees in the
sample who answer item 1i correctly, can be computed directly from
familiar standard formulas; it can also be computed with some effort from
the sampling variance-covariance matrix obtained by Lord and Wingersky
(1983). These two methods should give the same results if the Lord-

Wingersky matrix is correct.
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The usual likelfihood equations for by and for ¢§ , obtained by
setting the derivative of the likelihood function equal to zero, are

(Lord, 1980, eq. 12.] and 12.2)

N -~ ~ ~ A -~ ~ -
aoy e T PO ~cp Gy =0 (2)
N A A A A
z (uia - Pi(ea))/Pi(ea) =0 |, (3)
a=]
where ug, 1is the score (0 or 1) of examinee a on item i , N {s the

number of examinees, and 3 caret denotes substitution of parameter esti-
mates for true parameter values. Multiplying (3) by ¢; , adding to (2),

and transposing glves

N . .
z Pi(ea) = z uia .
a=] a=]
Since
1 N
P, =< L u . (4)
i N a=1 ia
we have




[ I~ 1

P, (8 (5)

[
Z|

a=]

From (4) and (5), we can derive two separate formulas for the variance
F,. of pi .
For some group of examinees whose abilities are specified by the

vector 6 = {8;,65,...,0y} , we have from (4) that

N N
L cov(ujy,ujat|8) ,
N® a=1 a'=l -

[}
[ae]

N

var(;ils)

) N
== I var(ujul®) ,
N a=1
1 N
== b pi(ea) oi(ea) . (6)
N a=1

with

oi(ea) =1 - Pi(ea) s

since cov(ujy,ui,'|6) = 0 when a # a' . Similarly,

cov(pi.pjlg) =0 "N
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By the formula for the covariance between two sums, we have from (5)

for the same group of examinees that

N

1 “ o~ A
var(pi]e) = ;5 ail cov[Pi(ﬁa),Pi(Oa)l?] . (8)
(pop ) =L 1 T [P,(8,),B,(8,) (0]
cov(p, ,p,|8) =— I I cov[P 9 ) P 6.)ie . (9)
1735 NZ a=] b=l b

The cov[P;(8,) , Pj(eb)JeJ are evaluated by applying the delta method
(Kelley, 1947, pp. 524-526; Kendall and Stuart, 1969, Section 10.6) to

(1). For fixed 6 (for simplicity, the notation " [8 " 1is omitted from

the following formula)

cov(;i(aa),gj(ab)) = wia"jb{tia jb[cov(éa,ab) - cov(%i,ab)

- cov(aa,gj) + cov(%i,;j)] + viatjbICOV(;i‘ab) - cov(; ,; )]

v3btia[cov(ea’aj) - cov(bi,aj)] + Via¥ib cov(ai,aj)

+ tjb[cov(::i,ab) - cov(::i,%j)]/m + vy, cov(E ay)

a

+ V. cov(;i,;j)]/l.7 + tia[cov(sa,cj) - cov(gi,;J)]/l.7

+ cov(ei,aj)/(l.7)2} . (10)




where

v - 1.701(68)
ia 1l - ¢ ’

tia = ai(Pi(ea) - ci) ’

Via ™ (ea - bi)(Pi(ea) -c) .

The standard errors for py; were calculated from (5) and again from
(8) and (10) for each of the 45 items in the test described in Section 3,
The results from the two different approaches agree to at least three
significant digits for each item. The cov(;i,;jlg) obtained from (9) and
(10) were all of order 10~/ or less. This gives us increased confidence

in the Lord-Wingersky sampling covariance matrix.




R agh i

Chakoanic

~9-

3. Effects of Changing Number of Items, Number of Examinees, or

the Frequency Distribution of Ability

To investigate the effect of changing the number of items, the

number of examinees, or the distribution of abilities on the sampling
errors of parameter estimates, various sets of parameters were specified.
The simplest set of parameters represents the administration of a 45-item
test to 1500 examinees. The numerical values used as the true 6, were
a spaced sample of 1500 éa drawn from the ability estimates obtained by
LOGIST for a regular administration of the Test of English as a Foreign
Language (TOEFL). A spaced sample of fifteen items were drawn from the
sixty TOEFL items whose parameters were estimated in the same run as the
abilities. The estimated parameters for these fifteen items were used as
the true parameters. These fifteen items were then replicated twice to get
a total of 45 items, where items 16-30 and items 31-45 have the same item
parameters as items 1-15. Note that various parameters were specified, but
no sets of artificial data were generated for this study, since sampling
variances and covariances depend only on the true parameters, not on sample
observations.

To investigate the effect of increasing the number of examinees, each
of 1500 8, was repeated four times to represent the 6, of 6000
examinees. To study the effect of increasing the number of items,
another 45 items were added exactly like the first 45 to create a 90-item
test, For a different distribution of abilities, a rectangular

distribution of 1500 6, between -3 and 3 was randomly generated.
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Tables 1-4 give the standard errors of the parameter estimates that
would be obtained from actual data in the various situations investigated.
Only the standard errors for the fifteen unique items are given in the
tables of the standard errors for the item parameters. The abilities are
grouped into 16 intervals between -4 and 3. Two of the intervals had no
examinees. N 1s the number of examinees and n 1is the number of items.
The values of both the “small” and "capital” parameters are given. The
constants to convert from the small scale to the capital scale are
bg = -.305 and k = 0.976 .

Figure 1 contains plots corresponding to these tables. Gaps in
the curve for the %1 are due to some points out of the range of the
plot. The standard error for Ei was not plotted against Cy , since most
of the C; were equal, but against By - 2/A;y instead. B3 - 2/Ay is
an indicator of the ability level at which the item response curve becomes
asymptotic. The higher By - 2/Ay , the better one should be able to
estimate C .

As expected, quadrupling the number of examinees halved the standard
errors of the estimated item parameters; doubling the number of items,
decreased the standard errors of the estimated abilities by a factor
of V2 . Quadrupling the number of examinees reduces the largest
standard errors for 68 sharply, but has little effect on the smaller

standard errors; doubling the number of items has only a moderate or
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Table 1

Standard Errors for Ai

Standard Errors for

Bell-shaped distribution Rectangular

A n=45 n=90 n=45 n=45
i i N=1500 N=1500 N=6000 N=1500

1 0.99 0.96 0.234 0.192 0.117 0.178
2 0.35 0.34 0.134 0.131 0.067 0.072
3 1.38 1.34 0.318 0.243 0.159 0.235
4 0.78 0.76 0.147 0.126 0.073 0.099
5 0.42 0.41 0.100 0.106 0.050 0.055
6 0.92 0.90 0.178 0.145 0.089 0.120
7 0.92 0.90 0.179 0.147 0.089 0.119
8 1.06 1.04 0.209 0.168 0.104 0.141
9 1.34 1.31 0.262 0.205 0.131 0.180
1.50 1.46 0.317 0.259 0.158 0.231

0.87 0.85 0.180 0.151 0.090 0.117

0.62 0.142 0.128 0.071 0.086

1.09 0.234 0.197 0.117 0.153

1.39 0.311 0.265 0.156 0.204

1.50 0.333 0.283 0.166 0.209




Standard Errors for

-12-

Table 2

B

i

~

Standard Errors for Bi
Bell-shaped distribution Rectangular
Item b B n=45 n=90 n=45 n=45
No. i i N=1500 N=1500 N=6000 N=1500
1 -2.01 ~1.75 0.516 0.466 0.258 0.339
2 ~1.61 -1.33 2.544 2.344 1.272 1.470
3 ~-1.09 -0.80 0.353 0.259 0.177 0.242
4 -0.77 -0.48 0.257 0.240 0.128 0.177
5 -0.67 -0.38 0.965 0.929 0.483 0.591
6 -0.34 -0.04 0.191 0.161 0.095 G.141
7 -0.15 0.16 0.165 0.141 0.082 0.128
8 0.00 0.31 0.143 0.117 0.071 0.113
9 0.11 0.42 0.124 0.096 0.062 0.096
10 0.26 0.58 0.110 0.092 0.055 0.097
11 0.46 0.79 0.103 0.101 0.051 0.098
12 0.57 0.90 0.178 0.179 0.089 0.148
13 0.68 1.01 0.085 0.086 0.043 0.086
14 0.90 1.23 0.082 0.080 0.041 0.076
15 1.16 1.50 0.103 0.089 0.052 0.077
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Table 3

Standard Errors for C1

-~

Standard Errors for C

i
Bell-shaped distribution Rectangular
Item c C n=45 n=90 n=45 n=45
No. i i N=1500 N=1500 N=6000 N=1500
1 0.17 0.17 0.598 0.469 0.299 0.316
2 0.17 0.17 0.715 0.628 0.358 0.409
3 0.17 0.17 0.096 0.083 0.048 0.045
4 0.17 0.17 0.144 0.123 0.072 0.080
5 0.17 0.17 0.318 0.280 0.159 0.183
6 0.17 0.17 0.071 0.064 0.035 0.039
7 0.17 0.17 0.059 0.054 0.029 0.033
8 0.17 0.17 0.041 0.039 0.021 0.025
9 0.13 0.13 0.026 0.025 0.013 0.018
10 0.34 0.34 0.026 0.026 0.013 0.021
11 0.17 0.17 0.039 0.038 0.020 0.025
12 0.17 0.17 0.068 0.064 0.034 0.039
13 0.25 0.25 0.027 0.027 0.014 0.021
14 0.29 0.29 0.020 0.020 0.010 0.018
15 0.18 0.18 0.015 0.015 0.007 0.015
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Table 4

Standard Errors for Oa

et ittt -

-

Standard Errors for Oa

Bell-shaped distribution Rectangular

0 0 n=45 n=90 n=45 n=45

a a N=1500 N=1500 N=6000 N=1500
-2.75 ~-2.51 2.090 1.478 1.331 1.453
=2.25 -1.99 1.296 0.917 0.879 0.955
-1.75 -1.48 0.861 0.609 0.621 0.669
-1.25 -0.97 0.607 0.429 0.460 0.491
-0.75 -0.46 0.456 0.322 0.373 0.390
-0.25 0.06 0.349 0.247 0.309 0.317
0.25 0.57 0.278 0.196 0.266 0.268
0.75 1.08 0.261 0.185 0.260 0.261
1.25 1.59 0.303 0.214 0.292 0.295
1.75 2.11 0.422 0.298 0.394 0.401
2.25 2.62 0.628 0.444 0.589 0.599
2.75 3.13 0.931 0.658 0.888 0.900
el — .
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STANDARD ERROR - ©

0,0
°

O———® [ +45.N=1800

Figure 1. Comparison of the standard for Ay , By , C4 , and

04 for different numbers of items, different numbers of examinees and
for a different distribution of examinees
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small effect on the standard errors of item parameter estimates. Note
that the effects discussed in the previous sentence cannot be investi-
gated at all using the usual standard error formulas, which assume either
that the item parameters are known or else that the 0O, are known.

The rectangular distribution of abilities definitely gives better
estimates of the item parameters than the bell-shaped distribution of
abilities. For C; where By - 2/A; 1is low, the rectangular distribution
gave standard errors nearly as low as the standard errors with quadruple

the number of examinees.

4. Displaying Standard Errors and Sampling Covariances

In looking at tables of standard errors it is hard to see how the
standard errors for Ri s ii » and &1 interrelate and how the standard
errors relate to the magnitude of the parameters. A plot of the three-
dimensional asymptotic joint normal distribution of ; . B , and &
would be useful but difficult to read. However, projections of the
contours of this distribution onto the three two-dimensional planes will
give a graphical representation not only of the magnitude of the standard
errors but also of the sampling correlations between the parameter
estimates. The projected contours are two-dimensional ellipses. These
plots are a refinement of a suggestion by Thomas Warm (personal
communication, 1982).

For convenience, the subscript 1 will now be dropped. To plot the

projection of the three dimensional contour onto the (A,B) -plane,

only var(A) , var(B) , and cov(A,B) are needed. The exponent of
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the asymptotic bivariate normal distribution of ; and B is given by the
right side of (11). The quadratic in brackets is asymptotically distributed
as chi square with 2 degrees of freedom. The 95th percentile for a X2 with
2 degrees of freedom is 5.99. Thus 95 percent of the time the obtained

(A,B) will lie within the ellipse given by the equation

. 2 ) : 5 2
5.99 = — 1 ({A- A" _ 2(A-MNB-8)  (B-B) (11)

1 - p2 var(A) ¢ Var(A) Var(B)  Var(B)

where

Cov(A,B)

/ Var(A) var(B)

Similar equations apply for the projections onto the (R,E) - and (%,6) -
planes. The ellipse plotted from (11) for a given N 1is identical to the
53-percent ellipse that would be plotted for a sample size N/4 .

The following procedure was used to plot a representative set of
ellipses. A hypothetical test of 60 items was created by selecting 60 items
from an operational SAT mathematics test and treating these item parameter

estimates as the true parameters. A standard normal distribution of 1000




R NPV

-18-

abilities was generated. We then created 15 new items with all combinations
of the parameters a = .5 , 1.0, 1.5; b=-2 ,6,-1, 0,1, 2 ; and c = .15 .
Using these new items, fifteen 6l1-item tests were created, each containing
the 60 original items and one of the new items. The sampling variance-
covariance matrix for each of the fifteen 6l-item tests was obtained.
These matrices differ only because the 6lst item differs for each matrix.
Only the variances and covariances for the 6lst item were used in (11) to
compute the ellipses.

The plots were made for an N of 16,000 to avoid confusing overlap of
the ellipses. These ellipses are also the 53% confidence ellipses for an N
of 4000. The left and bottom axes are labeled with the “"small” scale, the
right and top axes are labeled with the “"capital” scale. The standard errors
used are for parameter estimates on the capital scale. The transformation
parameters to transform from the small to the capital scale are BO = ,001 ,
k = 1.336 . The center of the ellipse is marked by a "+".

Figure 2 shows the ellipses on the (;,i) ~plane . The plot shows

~

that the standard error of A 1ncreases with A . The standard error of
B 1increases as B approaches the extremes, The sampling correlation
between A and B 1is moderately or strongly positive for easy items and

moderately or strongly negative for hard items.
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Figure 2. Projections onto the (A,B) -plane of the 95% ellipses for
an N of 16,000.
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Figure 3 shows the projections onto the (B,&) ~plane. At each value
of B there are three ellipses, which are concentric because c¢ = C = .15
for all items. The longest ellipse along the C axis is for a = ,5 ,
the middle ellipse is for a = 1.0 , and the shortest is for a = 1.5 . The
other triples of ellipses are similarly ordered on a . The standard error
of & is large for easy items and moderately small for difficult items; the
standard error of E decreases as a 1increases. As a decreases, the

~

sampling correlation between B and & becomes strongly positive except
for hard items where & is well determined.

Figure 4 shows the projections onto the (;,&) -plane. There are five
concentric ellipses for each value of A . The ellipse with the longest
¢ -axis 1s for b = -2.,0 , the ellipse with the shortest c¢ -axis is
for b = 2,0 . Again & has large standard errors for easy items
and for items with low a 's. For hard items the sampling correla-

tion between A and C 1is positive and sometimes high; for easy items,

the correlation is negative.

4. Standard Errors for Two Tests with Common Items

Suppose that each of two tests measuring the same ability is
administered to a different group of examinees. We want to use item
response theory either to put the items for both tests into a common item
pool or to equate the two tests. For either purpose it is necessary that

all the estimated parameters be on the same scale.
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an N of 16,000.




SMALL C

..2 2_

CAPITAL A 2.07

8 _'fo | .134 ¢ >
6 o
g v
o =]
oJ Q
" -
o Q
[=]

& | -
ka o

! p
+
¢
o o
o | 6
8 — | 8
0.00 1.00 2.00
SMALL A

Figure 4. Projections
an N of 16,000,

onto the (A,C) -plane of the 95% ellipses for

CAPITAL C




-23-

Unless equivalent groups of examinees are used, methods for doing this

usually require a subset of items that are common to both tests. The unique
items are the items in each test that are not common to the other test. The

item parameters for each test can then either be estimated separately in two
calibration runs or together in one calibration run. If the parameters are
estimated in two separate runs, there are two different parameter estimates
for each common item. These should be the same except for sampling error and
the arbitrary origin and unit of measurement of the ability scale. There are
several methods for determining the linear transformation necessary to trans-
form the item parameter estimates for both tests to the same scale. These
methods will not be described here (see Stocking and Lord, 1983). However, if
all of the items for both tests are calibrated in one run, called a concurrent
calibration, the parameters for both tests are automatically put on the same
scale and no linear transformation is necessary. This concurrent procedure is
most efficient; it provides smaller standard errors and involves fewer
assumptions than other procedures. The concurrent procedure is the procedure
studied here.

One question that arises when applying the common item method for
putting the parameters for both tests on a common scale is: How many common
items are necessary? Vale, Maurelli, Gilalluca, Weiss, and Ree (1981)
investigated this problem using simulated data with 5, 15, and 25 common items
and three different shapes of the common item section test information curve:
peaked, normal, and rectangular. They also investigated many other linking
methods. For the common item method, they assumed that one already had good
estimates of the parameters for the common items and required that one have

enough common and unique items to get good estimates of the abilities. They
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used two estimates of the abilities, one obtained from the common items, the
other from the unique items to determine the transformation to put the unique
items onto the common scale. They found that 15 to 25 items were necessary and
that the common item sections with a rectangular or normal information function
were better than those with a peaked information function.

Another study to determine the number of common items necessary was done
by McKinley and Reckase (1981). They compared the concurrent method and
several other methods for obtaining the linear transformations using the
two sets of item parameter estimates for the common items. A large set of
items using real data from a multidimensional achievement test covering seven
subareas was calibrated in one calibration run and these parameter estimates
were used as the criterion for determining how well the other linking
procedures put the parameter estimates for subsets of these items on a common
scale. A chain of three links was created, that is, test A was linked to
test B through one set of common items, test B to test C through another
set of common items, and test C to test D through a third set. Five sample
sizes ranging from 100 examinee to 2000 examinees were used. All four tests
were then calibrated in one run for the concurrent method for each sample. The
linking was done with 5, 15 and 25 common items. Each individual test was 50
items long including the common items. McKinley and Reckase concluded
that 5 items were not adequate, 25 items were better than 15, but 15 were
adequate for linking with the concurrent method.

Given the sampling variance-covariance matrix for all parameter estimates

in our single concurrent run when all parameters are treated as unknown, we
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can investigate what effect the number of common items has on the sampling
standard errors of the unique items in both tests. Note that this problem
cannot be investigated at all with the limited sampling-error formulas

that assume that either item or abllity parameters are known.

Numerical Procedures

Suppose test 1 has a section of unique items labeled V4 , and test 2 has
a section of unique items labeled Z5 . Both tests have the same set of common
items labeled CO . One group of examinees, group X , took test 1, another
group of examinees, group Y , took test 2. The information matrix Ilpql .
which must be inverted to get the variance-covariance matrix, has the

following structure (Lord and Wingersky, 1983):

Items Examinees
Group  Group
Va4 CO Z5 X Y
1 S11 0 0 F11 0
t
e 0 S22 0 F21 F22
m
s 0 0 S33 0 F39
L Ipql =
E
x
a Fj1  Fa) 0 ™m 0
m
1 0 F22 F32 0 T22
m
e
e
s
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The S submatrices ( S;) for the V4 items; Sy;2 for the common
items; S33 for the 25 items) contain 3 x 3 Fisher information matrices
for a; , bj , ¢4 on the diagonal. The T submatrices are the diagonal
information matrices for the examinees: Tj; for the examinees that took
test 1; Tpy for the examinees that took test 2. The F submatrices contain
the vectors fia » each of which i{s the 3 x 1 Fisher information vector
for item i and examinee a . Note that for Group Y , this is 9 for the
V4 1items; for Group X , this is 0 for 25 .

The matrix IIpql is inverted by grouping the abilities for group X
into sixteen groups and by grouping the abilities for group Y into
another set of sixteen groups. Then the formulas for inverting a
partitioned matrix using the method described in Lord and Wingersky (1983)

are successively applied.

Data and Results

To study the effect of the number of common items on the standard
errors of the parameter estimates for the unique items, we selected two
60-item SAT Mathematics tests with an additional 25-item common~item
section. The 60 unique items in the first test will be referred to as V&
and the 60 unique items in the second test will be referred to as 25 .
Estimates of all of the parameters were obtained in one concurrent LOGIST
run. These estimates were treated as true parameter values in computing

the standard errors for all 145 items.
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We then doubled the length of the common item section by simply
replicating the parameters for the 25 common items. Surprisingly, the
standard errors for the 120 unique items in V4 and 2Z5 computed with S0
common items agreed with the standard errors computed with only 25 common
items to two decimal places. If doubling the number of common items makes
so little difference, what is the effect of halving the number of common
items? Or at the extreme, reducing the number of common items to 2?

This is really not as absurd as it sounds. Providing the common items
are not part of the test score, other than improving the estimates of the
abilities, the function of the common items i{s to put the parameters
for the two sets of unique items on the same metric. If the model holds,
only a linear transformation is required to convert the parameters from one
scale to another. Only 2 parameters are necessary to determine this
linear transformation. With 2 common items we are estimating four param-

eters that affect the scale, the two a 's 1influence the scale unit and

the two b 's influence both the scale unit and origin. The two c 's are
not affected by the scale. Consequently with 2 items we actually have
two more parmeters than absolutely necessary. However, if the 2 common
items have parameter estimates with large standard errors, the scale will
be less well determined than if the estimates have small standard errors.
To study the effect of two common items on the standard errors of the
unique items, we selected 2 "good"” items and 2 "bad” items from the 25
common items. The item parameters and their standard errors for

the 2 "good” items were
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a SE(A) b SE(B) c SE(C)
.98 .09 -.10 .02 .06 .02
.96 .10 .21 .02 .15 .02

The item parameters and their standard errors for the 2 "bad” common

items were

a SE(A) b SE(B) c SE(C)
032 .10 -1051 la7 007 .24
.53 .07 -1.19 .12 .07 .10

These standard errors were computed for the situation where all 25 common
items are included in the parameter estimation run.

We then obtained the variance-covariance matrix for the V4 and 25 items
when only the 2 good common items are included in the estimation run and also
the variance-covariance matrix when only the 2 bad common items are used.

The constants to transform from the small scale to the capital scale are

50 = -,261 and k = 1.914 . Only V4 and 25 1items were used to compute

BO and k so that the same transformation would apply to all four variance-
covariance matrices.

Table 5 gives the medians, and the bottom and top quartiles of the
standard errors for ; , i , and & , for the Z4 and V5 wunique items
computed for four different situations: using 50 common items, using 25

common items, using 2 good common items, and using 2 bad common items. Using

2 good common items gives smaller standard errors for the unique items than

using 2 bad common items. The standard errors using the 2 good items
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Table 5
Comparison of the Standard Errors of Estimated Item Parameters across

the Four Sets of Common Items

50 25 2 Good 2 Bad
Common Common Common Common
Items Items Items Items
Standard Errors for A
First Quartile 0.114 0.115 0.123 0.131
Median 0.140 0.141 0.151 0.163
Third Quartile 0.224 0.226 0.236 0.243
Standard Errors for B
First Quartile 0.029 0.030 0.034 0.041
Median 0.042 0.042 0.048 0.056
Third Quartile 0.066 0.067 0.072 0.076
Standard Errors for C
First Quartile 0.013 0.013 0.013 0.013
Median 0.027 0.027 0.028 0.027
Third Quartile 0.055 0.055 0.058 0.056

f.
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are not much larger than the standard errors using 25 common items. Even
reliance on just 2 bad common items gives surprisingly good results.

Since the purpose of the common items is to determine the scale, it is not
surprising that the number of common items has a negligible effect on the

standard error of & , since ¢ 1is independent of the ability scale.

Table 6 gives the standard errors for the abilities computed with the
four different sets of common items. Not surprisingly, if we increase the
number of common items to 50 we reduce the standard error of the abilities,
although not uniformly as shown by the ratio column. The standard error for
the abilities at -2 were lower when computed using the two bad common items,
which were easy items, than when computed using the two good common items.

Even though there is little difference between the standard errors when
there are 2 common items and when there are 25 common items, the parameter
estimates for the V4 and 25 1items will not have been adequately put on the
same scale if all of the parameter estimates for V4 items err in one
direction and all of the parameter estimates for 25 items err in the
opposite direction. Is this what will happen in practice? To determine how
well an anchor test of only 2 common items puts tests V4 and 25 on the
same scale, we reestimated the parameters twice, once in a LOGIST run with
the items for Z5 and V4 and the two "good” common items, the other in
a LOGIST run with the items for Z5 and V4 and the two "bad"” common items.

The estimated parameters for Z5 and V4 computed with the 25 common

items will be used as the criterion for evaluating the calibrations
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Table 6

Comparison of the Standard Errors of Estimated Abilities across

W YR T e T

the Four Sets of Common Items

L
F 50 25 2 Good 2 Bad
. Common Common Common Common
E 6 0 Items Items Items Items

_a _a S.E S.E. Ratio S.E. S.E.
3 2.00 1.18 0.097 0.109 0.894 0.127 0.132
! 1.00 0.66 0.089 0.102 0.870 0.122 0.126
' 0.0 0.14 0.100 0.115 0.874 0.134 0.138
3 -1.00 -0.39 0.129 0.145 0.892 0.165 0.167
v -2.00 -0.91 0.221 0.248 0.891 0.288 0.281

e S
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with 2 common items. The 2 good common items did fairly well at putting

the parameters on this scale. The 2 bad items did not do so well.

The top plot in Figure 5 compares the b 's for the 60 unique V4 items
estimated with 2 good items with the b 's estimated with 25 common

items. Similarly, the bottom plot compares the % 's for the unique 25
items. If the parameters were on the same metric the ; 's in both plots
should fall on a 45° line. The difference from the 45° line is hard to
distinguish. The two points for 25 that are far away from the 45° line had
the c¢ 's fixed by LOGIST at the common ; value in one calibration but not
in the other.

A

Figure 6 shows t“e plots for the a 's for V4 and 25 respectively.

Here it definitely looks as 1if the ; 's are not on the same scale.
The ; 's for the V4 items have a slope greater than 45°.
Figure 7 compares the t 's estimated with the 2 bad common items with
the b 's estimated with 25 common items. Here the points for the Vi
items are above the 45° line, and points for the 25 items are below the
line. The plots comparing the ; 's in Figure 8 confirm that the 2 bad
common items do not put the parameters for Z5 and V4 on the same metric,
As suspected, with the 2 bad items the parameters for one set of the unique
items err in one direction and for the other set, in the opposite direction.
The reason for putting Z5 and V4 on the same scale was to equate

Z5 to V4 using true-score equating. What effect does using only 2 common

items to put the two forms on the same scale have on the true-score equating
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between the two forms? Figure 9 shows three true-score equating lines:

the solid line is the equating line found when the parameters are estimated
using 25 common items, the dotted line is the equating line found when the
parameters are estimated using just the 2 good common items, the dashed line
is found when the parameters are estimated using just the 2 bad common
items. For this equating, true scores on form 25 are first equated to
true scores on V4 , Then the true scores on V4 are converted to scaled
scores between 100 and 800 by a linear transformation. Using the equating

line with the 25 items as a criterion, the equating using 2 bad common items

is worse than the equating using 2 good common items. The equating using the
2 good common items 1s close to the equating with 25 common items; the
maximum scaled score difference is 8 points.

All of these results assume that the item parameters estimated using

25 common items are on the same scale. This analysis should be repeated in a

situation where one knows that all of the parameters used as a criterion are
on a common scale. From the results so far, it appears that good linking may
be obtained with as few as five common items or less. However, these results

| only apply when the item parameters for the two forms are put on a common

scale by estimating all of them in one calibration run. These results do not

apply when the two tests are calibrated in two separate runs and the

parameters are put on a common scale using some linear transformation

JEUTRIN | Y

determined from the common items.
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The conclusion that good linking may be obtained with as few as five
common items 1s more optimistic than the conclusions reached by Vale et al.
(1981) and by McKinley and Reckase (1981). Our differences with Vale et al.

may be due to the facts that 1) their scaling was based on estimated 6 '

5,
and 2) they used three estimation runs instead of one concurrent run. Our
differences with McKinley and Reckase are probably due to the facts that in
their study 1) the responses of some examinees to some items (as we
understand it) often appeared twice in the same concurrent LOGIST run,
violating the assumption of local independence; and, more importantly, 2)
they pooled the lowa Tests of Educational Development covering seven

different achievement areas, and analyzed the resulting multidimensional

pool of items as if it were unidimensional.

Summary

The asymptotic sampling variance-covariance matrix of maximum likeli-
hood estimators when both abilities and item parameters are unknown was
used to study several problems in item response theory, such as the extent
to which more items, more examinees, or a different distribution of
abilities will provide better estimates of parameters. It was found for the
values of n and N studied that that the standard error of 8 varies
inversely as Yn , but is only moderately affected by changes in N ; the
standard error of the estimated item parameters varies inversely as /N,

but is only slightly affected by changes in n .
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A rectangular distribution of abilites gives smaller standard errrors
for the item parameters than doubling the number of items. In fact, for low
A 's, also for C 's for items with B - 2/A 1less than -1, the standard
errors computed with a rectangular distribution of ability were nearly as
low as the standard errors computed with a bell-shaped distribution and
quadruple the number of people.

With the variance-covariance matrix computed when all parameters are
treated as unknown, one can study the effect of the number of common items
on the standard errors of the unique items when each of two tests containing
common items is administered to a different group of examinees and the
parameters for both tests are calibrated in one LOGIST run. This problem
cannot be dealt with at all by previously available sampling error formulas.
The number of common items has little effect on the standard errors of the
parameters for the unique items. The standard errors indicate that as few
as 2 items may be sufficient providing the parameter estimates for these two
items are well determined. However when two tests were actually
calibrated in one LOGIST run using 2 common items that had parameter
estimates with low standard errors, the parameters were not quite on the

same scale as the parameters estimated with 25 common items. The b 's
were very close to the same scale but the a 's for one of the tests
were on a slightly different scale., Although 2 items are not quite

enough, adequate linking may be possible with as few as five items.
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